Pre-class Warm-up!!!

In Section 2.3 I did not go over the following question, which starts:

Page 101 question 9
A motor boat weighs $32,000 \mathrm{lb}$ and its motor provides a thrust of 5000 lb . Assume that the water resistance is 100 pounds for each foot per second of the speed v of the boat. Then

$$
1000 \mathrm{dv} / \mathrm{dt}=5000-100 \mathrm{v}
$$

Then a question is asked about the motor boat.

Do you or your neighbor understand why the number 32,000 does not appear in this equation?
a. Yes
b. No

Or Does your neighbor understand where the 1000 comes from in this equation?
In for units 116 is a unit of farce In mks units I kg is a unit of mass In fps units I slug is accelerated at $l \mathrm{f} / \mathrm{sec}^{2}$ by a $11 b$ force 1 slug of strawberries $=32^{\prime \prime}$ pounds" of stander

Section 2.4: Euler's method

We learn:

- What it is and how to do calculations
- What 'step size' is.
- We don't need to know about: other terminology, errors. like sounding char etc

Page 114 question 5.
Apply Euler's method twice to approximate $y^{\prime}=y-x-1, y(0)=1$
on the interval $[0,1 / 2]$, first with step size $h=0.25$, then with step size $h=0.1$

The actual solution is $y=2+x-e^{\wedge} x$.

$$
\begin{aligned}
& \text { Let } h=x_{n}-x_{n-1} \\
& y_{n}=h f\left(x_{n-1}, y_{n-1}\right)+y_{n-1}
\end{aligned}
$$

Slope field of

$$
y^{\prime}=y-x-1
$$

Write

$$
y^{\prime}=f(x, y)
$$

The idea:

We start with a point $\left(x_{0}, y_{0}\right)$ on the solution curve

Take an increment
$=$ stepsize h
Put $\begin{aligned} \frac{y_{n}-y_{n-1}}{x_{n}-x_{n-1}}=\text { slope } \\ \text { at } x_{n-1}\end{aligned}$

$$
=F\left(x_{n-1}, y_{n-1}\right)
$$

